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Abstract-This paper deals with numerical prediction of natural convection heat transfer in a horizontal 
annulus in which the inner cylinder is hotter than the outer cylinder. A modified SIMPLE procedure is 
used for this purpose and it is shown that this procedure yields faster convergence. Results have been 
obtained for L/Q = 0.8 and 0.15. This latter value is of interest in Horizontal Pressurised Heavy Water 
Reactors. 

1. INTRODUCTION 

WE CONSIDER two-dimensional steady state natural 
convection heat transfer in a horizontal annular gap 
between two concentric cylinders in which the inner 
cylinder is hotter than the outer one. The situation 
is of interest in solar concentrators, thermal storage 
plants, inert-gas insulated electrical cables, and in 
horizontal pressurised heavy water reactors 
(PHWRs). 

Each situation however offers different values of 
the ratio of the gap width/inner diameter (i.e. L/D,). 
Typically most previous experimental or theoretical 
research publications deal with L/Di 2 0.5. In 
PHWRs, the gap between the pressure tube (i.e. the 
inner tube) and the calendria tube (i.e. the outer tube) 
however is very small such that L/Di = 0.15. The 
stable flow regime for this value is also restricted to 
low values (less than 104) of the Grashof numbers [l]. 

The purpose of the present investigation is to 
develop a correlation for L/D, = 0.15. The problem 
derives its importance from the fact that in the event 

of failure of the Emergency Core Cooling System 
activated under loss-of-coolant accident, the mod- 

erator surrounding the calendria tube is the only heat 
sink available in PHWR. The rate of heat transfer 
between the pressure tube? and the moderator is how- 
ever controlled by natural convection heat transfer 

through the air gap between the pressure tube and the 
calendria tube. For L/D, = 0.15 the available cor- 
relations (experimental or semi-empirical) show poor 
agreement between each other. 

This paper relates to numerical prediction of this 
natural convection heat transfer by solving governing 
equations for primitive variables pressure, velocities 
and temperature. This is in contrast with earlier inves- 
tigations (see for example [2]) which use the stream 
function-vorticity equations. The SIMPLE algorithm 
of Patankar and Spalding [3] is used to solve the 
equations. The algorithm however is modified to 
enhance the rate of convergence of the numerical 
solutions. 

Results are obtained for L/D, = 0.8 and 0.15. 

t The fuel elements are situated inside the pressure tube. 

Although the latter value is of interest, the former 
value is chosen to validate the program by comparing 
the present predictions with experimental as well as 
numerical results obtained earlier. 

2. MATHEMATICAL PROBLEM 

2.1. Governing equations 
Figure 1 shows the geometry of interest along with 

the chosen coordinate system. Due to symmetry about 
the vertical diameter, only semi-circular annulus need 
be considered for solving the equations. 

Consider two-dimensional steady state equations 
of continuity, momentum and energy transport in 
(r, 0) plane. When the following dimensionless par- 
ameters are used, i.e. 

T- T, 
T*=-----. 

r,- T, (1) 

I LINE 

FIG. 1. The domain of interest and the coordinate system. 
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NOMENCLATURE 

4 constants in the general partial T temperature 
differential equation @de) V velocity. 

C,,Cs,CE,CW coefficients in the finite 

d 

Gr, 
gr 
Se 
g 
K equ 
L 

P 
Pr 
r 

Ra, 
S 

difference equation (fde) 
source term in pde 
Grashof number 
radial velocity x radius 
tangential velocity x radius 
acceleration due to gravity 
equivalent thermal conductivity 
gap width 
pressure 
Prandtl number 
radius 
Rayleigh number (Gr,Pr) 
source term in fde 

Greek symbols 
c( relaxation parameter 

rp 

kinematic viscosity 
general variable 

w vorticity 
stream function 
coefficient of cubical expansion. 

Subscripts 
i inner cylinder 
0 outer cylinder 

; 
radial 
circumferential. 

the governing equations can be represented in a gener- 
alized form as : 

1 d . [ 7 ar* (ask) + f $ (as&) 1 -- 
convection term 

f[&g)+fi:(bg)] 
diffusion term 

d 
++ 

SJurce term ‘3 (2) 

where the meanings of 4, a, b and d are shown in 
Table 1 below: 

Table I. Coefficients in equation (2) 

Equation 4 

Continuity 1 

r-momentum 4r 

U-momentum 90 

Energy T* 

h d 

0 0 

1 4 

1 d 98 

r* 0 
Pr 

where 

GrL -----T*sinl?. (3) 
(1 -rl*)3 

The above coupled set of equations are numerically 

integrated with the following boundary conditions : 

Inner cylinder (r* = r:) 

w 
T*=l, g,=ge=o, dr*=~ 

Outer cylinder (r* = 1) 

T* = 0, g, = gs = 0, 
w 
ar* = 0 

Symmetry lines (6’ = 0 and 7~) 

aT* ag, aP* 
de= 0, Se = 03 a@ 

-=--0. 
a@ (4) 

After obtaining converged solutions (see Section 2.3), 
the stream function distribution is extracted from gr 
and gs via the stream function equation which when 
written in the form of equation (2) yields : 

qb = I+!J, a = 0, b= r*, d= r*w, (5) 

where 

a* a* gs _=_ 
s= grl ar* r* 

and 

2.2. Finite-d@erence equation 
The finite-difference equation for each 4 is derived 

from equation (2) using the familiar control-volume 
method with reference to a staggered grid shown in 
Fig. 2. The method yields value of the variable 4 at 
node P in terms of the values of its neighbours (N, S, 
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FIG. 2. Typical grid node for T* and P* showing staggered 
locations of variables. 

E, W) as 

&JC, + Cs + CE + Cwl = GA-4 + Ws 

+W,+Cwew+S (6) 

where the C’s represent the convective diffusive influ- 

ences and S represents the effects of sources. The C’s 
are always rendered positive since convective terms 
are written in upwind-difference form. Equation (6) 
represents a set of coupled algebraic equations for 
each 4. The set is solved iteratively by the Alternating 
Direction Implicit Technique. 

2.3. Modzjied simple algorithm 
The solution of momentum equations requires 

specification of pressure distribution. The SIMPLE 
algorithm of Patankar and Spalding [3] evaluates this 
pressure via a continuity equation as follows : 

(i) Specify guessed pressure P,* and T*. 
(ii) Solve momentum equations to yield g,*and g& 

say. 

The g: and gz thus obtained would not satisfy the 
continuity equation unless J’,* is correctly guessed. 
Hence a correction to P,* is sought as 

P* = p,*+p’, (7) 

where p’ is determined via continuity equation by 
approximating true g, and gs as 

g,, = g;+wp; -Pbh gr, = S:‘.wPkPiJ 

gs, = gs*,.+WpI,-~6), gs, = gs*,+Npb-p’,). (8) 

It may be noted that convection-diffusion influences 
are ignored. Also, in the source terms, terms other 
than those containing pressure are also ignored. 

Substituting these velocities in the continuity 
equation, one obtains a finite-difference equation for 
pressure correction p’ as 

PXG + cs + G-f C,) = CNP;, + GPQ 

+G~k+C~p&+m,, (9) 

where 

mp = (gt -gt)rP* de+ (g$ -se*,) dr*. (10) 

Solution of equation (9) by AD1 method is added to 
p,‘to get p* via (7). Experience however shows that an 
under-relaxation is required. Thus, 

p* = p;+ crp’, (11) 

where CI is typically 0.5-l .O. 
The basis for this under-relaxation lies in ignorance 

of convectivAiffusive and source influences in equa- 

tion (8), which estimates a pressure correction which 
ensures satisfaction of continuity but not of momen- 
tum equations. In order to obviate this Patankar [4] 
proposed the SIMPLER algorithm. 

Here we propose two alternatives to SIMPLE 
algorithm which include influences of convection, 
diffusion and sources in a predictor-corrector fashion. 

First modzjication. After performing calculations as 
per SIMPLE the predicted velocity corrections for the 
whole field are stored as : 

s:, = D”(P$ -P’p> 

si, = ~“(P;Y -PL). 
(12) 

Now the new values of g, and gs are written as : 

and similarly for &” and &,. 
Note that Sg, and Sg8 terms represent the sources of 

momentum equations contining g, and gs in them ; 
terms containing temperature are ignored. Now g: 
and gi are substituted in the continuity equation and 
equation for p” is obtained analogous to eqn (9), 
where 

In the above derivation, it is noted that g,,, g,“, gs, and 
ge, in equation (13) already satisfy the continuity 
equation and hence do not contribute to m”p. Solu- 
tion of p” allows calculation of p*” as : 

P *n = p* +p”. 

Now using equations (13), the new values of & and 
& are obtained. 

Second modification. In the first modification, the 
temperature dependent terms in sources were ignored 
while writing equation (13). The effect of these terms 
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is included as follows : 
After applying velocity corrections as per SIMPLE, 

the temperature equation is solved to yield a new 
temperature distribution T*“, say. Now, the change 
in temperature thus predicted is stored as : 

T’ = T*“- T”, (16) 

Now, again equations analogous to equation (13) are 
written but this time the source terms S,, and Sso are 
functions of g:, gk and T’. Subsequent procedure is 
same as before. The influence of these modifications 
is discussed in the next section. 

In summary we note that the modifications sugges- 
ted involve solution of a greater number of equations 
per iteration. Thus in SIMPLE 4 equations (i.e. gr, gO, 
p’, T) are solved. In the first modification 5 equations 
are solved (i.e. gr, ,9,,, p’, p”. T) whereas in the second 
modification 6 equations are solved (i.e. y,, g,,, p’, T’, 
p”, T). Compared to SIMPLE, the first modification 
requires storage of two more variables (i.e. ,9: and 9;) 
whereas the second modification requires storage of 
three more variables (i.e. .9:., pi, and T’). 

3. RESULTS AND DISCUSSION 

The presence of natural convection augments the 
heat transfer rate compared to that which would be 
obtained if the heat transfer was by way of conduction 
alone. Hence it is convenient to define the heat transfer 
augmentation factor by an equivalent conductivity 
defined as 

K 

equ 

= Heat transfer by convection 

Heat transfer by conduction 

Thus at the inner cylinder 

r, log (r,lr, 1 aT Rc,,,, = _~___ __ 

(T,-T,) dr ,=“, 
(17) 

and at the outer cylinder 

r,, log (r,/r,) ST 
(18) 

where bars over temperature derivatives denote 
circumferential averages, i.e. 

(19) 

boundary conditions and calculation of heat flux at 
solid boundaries. 

Convergence 
The convergence of solutions has been checked 

both by the fractional change as well as residual source 
criterion. For all runs it was ensured that the 
maximum normalised residual source was below lo- j, 
and that the heat imbalance was within 1.5%. 

Method oj’computation 
Solutions were first obtained for low Ra, value, 

with initial guess of conduction temperature profile 
and zero velocities. The solutions for higher Rayleigh 
numbers were obtained using converged solutions for 
lower Rayleigh numbers. Greater under-relaxation of 
momentum equations was necessary at high Rayleigh 
numbers. 

Comparison qf‘numerical algorithms 
In Table 2 below, the SIMPLE algorithm is com- 

pared in terms of computer time on CYBER 730/170 
with the two modifications suggested in the previous 
section. Results are presented for Ra, = 3.29 x 10“. 
The momentum and temperature equations were 
solved by Gauss-Seidel procedure whereas the press- 
ure correction equations were solved by the AD1 tech- 
nique. In all cases momentum equations were under- 
relaxed by 50%, whereas p’ equation was solved with 
r = 0.5 when solving by SIMPLE. In the modi- 
fications suggested neither@ norp” needed any under- 
relaxation (i.e. x = 1.0). No under-relaxation was 
applied to the temperature equation. The initial guess 
in each case was that corresponding to RaL = 700. 

The SIMPLE algorithm is found to be extremely 
slow to converge and even after 1000 iterations the 
heat balance is only 2.7%. The modifications 
suggested, although they involve solution of a greater 
number of equations per iteration, are found to be 
nearly 4 times faster than SIMPLE. 

Conjirmatory calculations jbr LID, = 0.8, Pr = 0.7 
Figure 3 shows the comparison of present pre- 

dictions of mean conductivity with numerical pre- 
dictions and experimental correlation of Kuehn and 
Goldstein [2], Grigull and Hauf [6] and Boyd [5]. The 

It is quite clear that for a perfect heat balance 

Q”, = EC,“,,. 
Table 2. Comparison of numerical algorithms 

Heat 

Computational details Number of CPU balance 

Grid. All results for Ra,, < 7000 have been obtained 
Algorithm iterations Sec. (%) 

~ 
with 27 x 21 (N,, x N,) gridlines whereas those for SIMPLE 1000 3080 2.7 
higher Ra, have been obtained with 27 x 31 gridlines. First 

Fine mesh sizes are provided near the inner and outer Sc$ifiCation 170 765 0.17 

cylinders as well as near the lower and upper sym- modification 120 653 0.7 
metry planes to effect accurate specifications of _~ _~ _~~ ~_ ~. 
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AAA PREDICTIONS (2) 

000 PRESENT PREDICTIONS 

LIDi B 0.8, Pr = 0.7 

J 

1OJ lo* 105 

RQL 

Flo. 3. Equivalent conductivity as a function of Rayleigh number. 

agreement with numerical predictions of Ref. [2] and 
experimental correlations of Refs. [2, 61 is excel- 
lent. The semi-empirical (boundary layer type) analy- 
sis of Boyd [5] however over-predicts the data. This 
is probably because of the failure of the analysis to 
properly account for the recirculation region near the 
top and bottom axes of symmetry. 

Figure 4 shows the comparison of local con- 
ductivities at inner and outer cylinders with pre- 
dictions of Ref. [2]. Except near the lower symmetry 
line at the outer wall the agreement is excellent. The 
small disagreement is likely due to the fact that Kuehn 
and Goldstein have used coarser grid than used in the 
present investigation. 

The presently computed temperature profiles also 
show good agreement (f 5%) with measurements of 
[2] as shown in Fig. 5. Similar conclusion can be drawn 
from Fig. 6 where numerically computed values of 
angular velocity from [2] are compared with present 
predictions. 

Figure 7 shows the comparison between the present 
prediction and those of [2] as it relates to stream 
function and temperature contours. The figure clearly 
brings out the fact that natural convection causes 
recirculation of the fluid with warm fluid rising up 
near the inner cylinder and descending near the outer 
one. It may be noted that prediction of [2] are for 
Ra, = 5 x 104. 

A (OUTER) 
KUEHN (RaL=5x10’) 

0 (INNER) 

-PRESENT PREDICTIONS 

tRoL= 4.7 Y lob I 

+y = 0.8 ) Pr 2 0.7 
1 OUTER CYLINDER 

NER CYLINDER 

FIG. 4. Comparison of local equivalent conductivities at inner and outer walls. 
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FIG. 5 

O’(LOWER SYMMETRY LINE 1 
PREDICTIONS 
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x 300 

0 90’ 

TX 
D ld 

SYMMETRY LINE 

Oo 0.1 02 0 3 0 L 0.5 0.6 0.7 0.9 0.9 1.0 
r -Ti 

F=F 0 I 

Comparison of predicted and measured temperature profiles for 
L/Di = 0.8. 

MEASUREMENT [2] 
- 

Ru, = 4.73 x 104, Pr = 0.7, 

0 0 0 PRESENT 
PREDICTIONS 

” 

Fro. 6. Distribution of angular velocity for Ra, = 4.73 x 104, 
Pr = 0.7, L/D, = 0.8. 

0.0 0.1 0.2 0.3 0 4 0.5 0.6 0.7 0.8 0.9 1.0 

r -ri 

r,-r; 

Predictions for L/Di = 0.15, Pr = 0.7 
Figure 8 shows the variation of mean conductivities 

with RaL. The data can be well correlated by 

KeqU = 0.65Raj-” 

is in accord with the present predictions. 

The figure also compares correlations of Boyd [5] 
and Grigull and Hauf [6]. It is seen that both these 
correlations considerably over-predict the presently 

computed data. In fact it is clear that these cor- 
relations are not suitable for low values of Ra, and 

LIDi. It may be mentioned however that for 
LiDi = 0.1, Pr = 0.7 and Ra, = 104, Kuehn and 
Goldstein calculate %,, = 1.272. This is the only 
value computed by them and the order of magnitude 

PRESENT 

0 

180 

RaL - 4.7 x lo4 

FIG. 7. Predicted and measured stream 

KUEHN 6 GOLDSTEIN 

90 90 

RaL = 5 x lo4 

function and temperature profiles. 
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6 - 

000 PRESENT COMPUTATION 
____ PRESENT CORRELATION 

L /I& = 0.15, Pr = 0.7 

FIG. 8. Equivalent conductivity as a function of Rayleigh number. 

CONCLUSIONS 

(1) In this paper numerical predictions for natural 
convection heat transfer in horizontal annulus 
have been obtained for gap width/internal diam- 
eter (i.e. LIDi) ratio of 0.8 and 0.15 for Pr = 0.7 
using a modified form of the SIMPLE numerical 
procedure of Patankar and Spalding [3]. 

(2) The modified procedure has been found to effect 
faster convergence as it accounts for effects of 
convection and diffusion as well as some of the 
source terms in estimation of pressure correction. 

(3) Results obtained for L/Di = 0.8 have shown excel- 
lent agreement with previous numerical as well as 
experimental data. 

(4) In horizontal PHWRs L/Di = 0.15 is of interest. 
It is shown that all the previously generalised 
correlations not only do not match between 
themselves but also over-predict the presently 
computed heat transfer rates. The following corre- 
lation is recommended for L/Di = 0.15, Pr = 0.7, 

300 < Ra, < 7000: $ = 0 65Ra0.08 W . L . 
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PREVISION NUMERIQUE DE LA CONVECTION THERMIQUE NATURELLE 
DANS UN ESPACE ANNULAIRE HORIZONTAL 

RCun+-On traite du calcul numerique de la convection thermique naturelle dans un espace annulaire 
horizontal, dans lequel un cylindre inttrieur est plus chaud que le cylindre exttrieur. Une procedure 
SIMPLE modifiee est utilisee dans ce but et on montre qu’elle foumit une convergence rapide. Des resultats 
sont obtenus pour L/D, = 0,8 et 0,15. La demiere valeur prdsente de l’inttrbt dans les reacteurs a eau 

lourde pressuride horizontaux. 
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NUMERISCHE BERECHNUNG DER NATURLICHEN KONVEKTION IN 
HORIZONTALEN RINGRAUMEN 

Zusammenfasaung-Der Artikel behandelt die numerische Berechnung des Warmetibergangs bei natiir- 
lither Konvektion in einem horizontalen Ringraum, wobei der innere Zylinder warmer ist als der Bul3ere. 
Eine modifizierte Form der SIMPLE-Methode wird benutzt, und es wird gezeigt, daD diese Methode 
schneller konvergiert. Ergebnisse wurden fur Werte von L/Di = 0,8 und 0,lS berechnet, letzterer Wert ist 

von Interesse in waagerechten mit schwerem Wasser betriebenen Druckwasserreaktoren. 

PACXET ECTECTBEHHOKOHBEKTHBHOfO TEfIJIOO6MEHA B 1-OPM30HTAflbHOM 
KOJIbHEBOM CJIOE 

Annorruwn-PaccriiTaH eCTeCTBeHHOKOHBeKTWBHb~i? TeWlOO6MeH B TOpH30HTaJlbHOM KOJIbLWlOM CJlOe, 

npmeM e~y~pe~mii uunwHnp Tennee HapyaHoro. kkl7OJlb3yeTCK MOlIH+ilUfpOBaHHaSl MeTOlIHKa 

SIMPLE; noaa3ano, VTO orra aaer 6onee 6bICTpyro CxomiMocTb. Pe3ynbTaTbI nonyveHbr NM L/D, = 0,8 
M 0,lS. llocnemee 3HaveHRe npencraenaer wrtrepec ana rope30riranbtibrx repMerri3HpoaaHHbrx peaxro- 

par, rta mmenoii Bone. 


